Mathematics Second Term Examination Questions 2019/2020 Session – Senior Secondary School Two (SSS 2)

EDUDELIGHT GROUP OF SCHOOLS

2ND EXAMINATION 2010/2011

SUBJECT:               MATHEMATICS   CLASS: S.S. 2

SECTION A

INSTRUCTION:  Answer all the questions in this section

1. Find (1012)2 express your answer in base 2  (a) 10101   (b) 11001  (c) 19119   (d) 1101
2. Simplify:  0.027-1/3   (a) 3 1/3 (b) 3  (c) 1/3  (d) 3/10
3. Solve the inequality: 1/3(2x-1)<5  (a) x < -6   (b) x < 8  (c) x < -5  (d) x < 16
4. What is the smaller value of x for which x2 + 3x + 2 = 0? (a) -1  (b) -2  (c) 1  (d) 2
5. Factorize the expression  x(a-c) + y(c-a)    (a) (a-c) (y-x)  (b) (a-c) (x-y)  (c) (a+c) (x-y)  (d) (a-c)         (x + y)
6. Solve the equation 3x2 + 2x – 18 = 0    (a) -3, 2  (b) -2/3,  9  (c) -2, 9  (d) -2, 3
7. Solve the equation  (x+2) (x-7) = 0  (a) 1 or 8   (b) 2 or 7   (c) -4 or 5  (d) -5 or -2
8.  The bearing of two point Q and R from a point Q are 0300 and 1200 respectively.  If /PQ/= 2m and /PR/ = 5m.  Find the distance QR  (a) 13m   (b) 11m   (c) 9m
9. Find dy/dx of x 3– 6x2 + 12x – 8  (a) 3x3 – 12x + 12  (b) 3x2 – 12x  + 12  (c) 3x2 + 12x – 12  (d) 3x2 = 12x -8
10.  If dy/dx moves from the positive to a negative number there arises a  (a) Maximum point  (b) minimum point  (c) point of inflection  (d) stationary point
11. If two point A(2, -3), b(3, 4) are points on the graph.  What is the gradient of the curve  (a( 1  (b)  7  (c)   -7  (d) -1
12. If x varies over the set of real numbers which of the following is illustrated in the diagram above?  (a) -2 < x  <  3  (b) -2 < x < 3  (c) -2 < x < 3  (d) -2 < x < 3
13. In triangle  XYZ below XM is the altitude from X to YZ. XY = 15cm, and YM = 5cm.  find the length of YZ.  (a) 9cm  (b) 14 cm  (c) 12cm  (d) 19.85cm
14. Two angles of a triangle are 410 and 490 which of the following is true?  It is  (a) An equilateral triangle   (b) a right angled triangle
15. If sin O = -1/2, find the value of O between 00 and 3600  (a) 1200, 2400  (b) 2100, 3300  (c) 1200, 1800  (d) 2100, 3000A tree is 8km due south of a building, Kofi is standing 5km west of the tree.  Use this information to answer question 17 and 18.
16. How far is K  from the building  (a) 4 2km   (b) 8km  (c) 8 2km   (d) 16km
17. Find the bearing of Kofi from the building  (a) 3150 (b) 2700 (c) 2250 (d)1350
18. Find the bearing of equivalent to 5500 W (a) 0400 (b) 1300  (c) 2200  (d) 2300
19. If sin 2 ө = cos ө find ө  (a) 40  (b) 22.5  (c) 45  (d)50
20. If Sin 2 Ө = Cos Ө  find Ө (a) 40 (b) 22.5 (c) 45 (d) 2.30

THEORY

1.  (a) A point P is 40km from Q on a bearing of 0610 calculate, correct to one decimal place, the distance of  P to  (i) North of Q   (ii) East of Q

(b) Illustrate graphically and shade the region in which the inequalities Y – 2x < 5.  2y = x > 4

• Using the first principle, differentiate 2 x 2 + 2x – 3.
• Two men P and Q set off from a base camp R prospecting for oil.  P moves 20 km on a bearing of 2050 and Q move, 15km on a bearing of 0600.  calculate the (a) distance of Q from P  (b) bearing of Q from P  (Give your answer in each case correct to the nearest whole number)

Lessonplan

Get Lesson plans, Lesson notes, Scheme of work, Exam Questions, Test Questions for all subject for Primary school and Secondary School.

Close

Share via
Share
Close
Close