# Mathematics Second Term Examination Questions 2019/2020 Session – Senior Secondary School Two (SSS 2)

EDUDELIGHT GROUP OF SCHOOLS

2ND EXAMINATION 2010/2011

SUBJECT:               MATHEMATICS   CLASS: S.S. 2

SECTION A

INSTRUCTION:  Answer all the questions in this section

1. Find (1012)2 express your answer in base 2  (a) 10101   (b) 11001  (c) 19119   (d) 1101
2. Simplify:  0.027-1/3   (a) 3 1/3 (b) 3  (c) 1/3  (d) 3/10
3. Solve the inequality: 1/3(2x-1)<5  (a) x < -6   (b) x < 8  (c) x < -5  (d) x < 16
4. What is the smaller value of x for which x2 + 3x + 2 = 0? (a) -1  (b) -2  (c) 1  (d) 2
5. Factorize the expression  x(a-c) + y(c-a)    (a) (a-c) (y-x)  (b) (a-c) (x-y)  (c) (a+c) (x-y)  (d) (a-c)         (x + y)
6. Solve the equation 3x2 + 2x – 18 = 0    (a) -3, 2  (b) -2/3,  9  (c) -2, 9  (d) -2, 3
7. Solve the equation  (x+2) (x-7) = 0  (a) 1 or 8   (b) 2 or 7   (c) -4 or 5  (d) -5 or -2
8.  The bearing of two point Q and R from a point Q are 0300 and 1200 respectively.  If /PQ/= 2m and /PR/ = 5m.  Find the distance QR  (a) 13m   (b) 11m   (c) 9m
9. Find dy/dx of x 3– 6x2 + 12x – 8  (a) 3x3 – 12x + 12  (b) 3x2 – 12x  + 12  (c) 3x2 + 12x – 12  (d) 3x2 = 12x -8
10.  If dy/dx moves from the positive to a negative number there arises a  (a) Maximum point  (b) minimum point  (c) point of inflection  (d) stationary point
11. If two point A(2, -3), b(3, 4) are points on the graph.  What is the gradient of the curve  (a( 1  (b)  7  (c)   -7  (d) -1
12. If x varies over the set of real numbers which of the following is illustrated in the diagram above?  (a) -2 < x  <  3  (b) -2 < x < 3  (c) -2 < x < 3  (d) -2 < x < 3
13. In triangle  XYZ below XM is the altitude from X to YZ. XY = 15cm, and YM = 5cm.  find the length of YZ.  (a) 9cm  (b) 14 cm  (c) 12cm  (d) 19.85cm
14. Two angles of a triangle are 410 and 490 which of the following is true?  It is  (a) An equilateral triangle   (b) a right angled triangle
15. If sin O = -1/2, find the value of O between 00 and 3600  (a) 1200, 2400  (b) 2100, 3300  (c) 1200, 1800  (d) 2100, 3000A tree is 8km due south of a building, Kofi is standing 5km west of the tree.  Use this information to answer question 17 and 18.
16. How far is K  from the building  (a) 4 2km   (b) 8km  (c) 8 2km   (d) 16km
17. Find the bearing of Kofi from the building  (a) 3150 (b) 2700 (c) 2250 (d)1350
18. Find the bearing of equivalent to 5500 W (a) 0400 (b) 1300  (c) 2200  (d) 2300
19. If sin 2 ө = cos ө find ө  (a) 40  (b) 22.5  (c) 45  (d)50
20. If Sin 2 Ө = Cos Ө  find Ө (a) 40 (b) 22.5 (c) 45 (d) 2.30

THEORY

1.  (a) A point P is 40km from Q on a bearing of 0610 calculate, correct to one decimal place, the distance of  P to  (i) North of Q   (ii) East of Q

(b) Illustrate graphically and shade the region in which the inequalities Y – 2x < 5.  2y = x > 4

• Using the first principle, differentiate 2 x 2 + 2x – 3.
• Two men P and Q set off from a base camp R prospecting for oil.  P moves 20 km on a bearing of 2050 and Q move, 15km on a bearing of 0600.  calculate the (a) distance of Q from P  (b) bearing of Q from P  (Give your answer in each case correct to the nearest whole number)

### Lessonplan

Get Lesson plans, Lesson notes, Scheme of work, Exam Questions, Test Questions for all subject for Primary school and Secondary School.

Close

Share via
Share
Close
Close