Mathematics Second Term Examination Questions 2019/2020 Session – Junior Secondary School (JSS 1, JSS 2, JSS 3)

            EDUDELIGHT GROUP OF SCHOOLS

       1 BENSON AVENUE, LEKKI PHASE 1, LAGOS STATE.

SECOND TERM EXAMINATION 2019/2020 SESSION

SUBJECT:    MATHEMATICS                                                     CLASS:  J.S.S 1

SECTION A:  OBJECTIVE QUESTION

  1. Approximate 22.652 to 1 significant figure  (a) 22.652  (b) 22  (c) 22.6  (d) 22.7
  2. Round off 24874 to the nearest hundred  (a) 24874  (b) 24870  (c) 24900  (d) 25000
  3. Evaluate + 10 x -5 = (a) 50  (b) -50  (c) +50  (d) -5
  4. Write 100two in the power of base two  (a) 510  (b) 610  (c) 010  (d) 710
  5. What is the place of 4 in these figures 3456  (a) thousand  (b) hundred  (c) tens
  6.            
  1. What is the fraction of the shaded portion in this diagram  (a) 1/10   (b) 1/5   (c) 2/3   (d) 4/5
  2. Solve 5/4 + (- 2/3)  (a) 23/12    (b) 11/3   (c) 5/4   (d) 7/2
  3. Simplify 6 ¾ + 5  (a) 1  (b) 8  (c) 6  (d) 7
  4. Binary number system has two digits  (a) 2 and 3  (b) 5 and 6  (c) 4 and 1  (d) 1 and 0
  5. Add this binary number 11 + 10  (a) 110  (b) 101  (c) 001  (d) 200
  6. Subtract 11two – 10two   (a) 2two  (b) 11two­  (c) 1two  (d) 001two
  7. – 6 + 7 – 9 – 8 + 18 – 2 = calculate the value  (a) 30  (b) 40  (c) 0  (d) 1
  8. -16 – 20 + 40 – 2  =  (a) – 4   (b) + 2  (c) 6  (d) 19
  9. If Tolu borrow N5 in the morning and N4 in the afternoon without paying how much is his debt.  (a) N1  (b) N7  (c) N9  (d) N10
  10. Calculate by approximation 14.3/ 2.2

           (a) 4  (b) 3  (c) 7  (d) 14

SECTION B:

Consider the following examples

If 8, 2 = 18

7, 2 = 14

16.         ___,2 = 12                                                   (17)  4, 3 = __                                       (18) 0, 2 = ?

SECTION C:

1a.         How many minutes are in one house? (2mks)

b.           A ladder has 24 steps, a man climbed it to the middle, how many step has the man climbed? (4marks)

c.           What is half of dozen?  (2 mks)

d.          What is the 2/3 of 600 eggs (2mks)

2a.         How many days are in the month of January? (2mks)

b.           Simplify 1/3 + ¼ + 5/12  (3mks)

c.           Write in words 4567000

d.          Two dozen of mangoes is equal to : (2mks)

3a.         Convert 45% to decimal (3mks)

b.           Find the L.C.M of 4, 8, 12, 24 (2mks)

d.          Write fourteen billion, five hundred and seventy six thousand, seven hundred and eighty.

4a.         (3x + 1)2 Expand (3mks)

b.           4/21 ÷ 5/99 of 11/35 – ¾ + 1 1/3  (4mks)

c.           Arrange  the following in ascending order

              ½, 13/167/8, ¾ , 7/16 (3mks)

5a.         Convert 110004two to base ten (3mks)

b.           Convert 198two to base two (2mks)

c.           If a = 2, b = 5, c = 7, fine x in x = bc – ab / abc

d.      the double shaded part equals? (2mks)

    

           

EDUDELIGHT GROUP OF SCHOOLS

       1 BENSON AVENUE, LEKKI PHASE 1, LAGOS STATE.

SECOND TERM EXAMINATION 2019/2020 SESSION

SUBJECT:    MATHEMATICS                                                     CLASS:  J.S.S 2

  1. Round off 397 to the nearest 100  (a) 390  (b) 300  (c) 400  (d) 3970
  2. Round off 33 to the nearest 10  (a) 30  (b) 20  (c) 40  (d) 50
  3. Calculate 32.3 + 20.4 by rounding off  (a) 56  (b) 70.6  (c) 50  (d) 52.7
  4. x – 3 = 2  (a) 6  (b) 5  (c) 7  (d) 9
  5. 3x + 2 = 23  (a) 14  (b) 7  (c) 25  (d) 3
  6. Solve x/3 + x/4 = 7/2    (a) ½  (b) ¾  (c) 6  (d) 18
  7. 4 + 2    ?        10  (a) <  (b) >   (c) =
  8. Sqareroot of 100    8    ?        (a) >  (b) >   (c) <  (d) =
  9. O  ———->   represent (a) <   (b)  >  (c) >  (d) <
  10.         <————-   Represent  (a) >   (b) <  (c) <  (d) >
  11. A triangle has _____ sides  (a) 3  (b) 6  (c) 8  (d) 4
-4 -3 -2 -1  0  1  2  3  4  5  

(a) x  >  1  (b) x < 1  (c) x > 4  (d) x < 4

13. Solve this equation 8x – 6 = 3x + 9  (a) 2  (b) 6  (c) 3  (d) 10

14. Solve 2 (3x – 5) = 7x – 34  (a) 10  (b) 35  (c) 24  (d) -24

15. Find the square root of 49, 64, and 144  (a) 3, 12, 9  (b) 7, 8, 12  (c) 2, 3, 6  (d) 8, 12, 6

SECTION B:  FILL IN TH GAPS

  1. Triangle has _____________sides
  2. Isosceles triangle has _________lines of symmetry
  3. The perimeter of a rectangle is _____________________
  4. I am a shape, I have 4 equal sides. I am _________________
  5. Angle at a point is ______________________

SECTION C

1a.       Draw the graphy of y = 2x – 3 for value of x from -2 to +3  (4mks)

b.         From the table plot the graph of x against y  (3mks)

c.         When x = -1.5 find y, when y = 6.1 find x (3mks)

2.         What is plane shapes? (4mks)

b.         Draw an equilateral triangle (3mks)

c.         State the properties (3mks)

3a.       What is a rhombus?  (4mks)

b.         Give three properties of rhombus (3mks)

c.         Mention three classification of triangle (3mks)

4.         Kikelomo buys x novels at N300 each and (x + 2) novels at N400 each, she spends less than N5000,  Find the possible values of x. (10mks)

5.         When a number is doubled and 12 is added to it, the result is 40.  Find the number. (5 mks)

 b.        Draw a circle and list the properties or elements (5mks)

           

EDUDELIGHT GROUP OF SCHOOLS

       1 BENSON AVENUE, LEKKI PHASE 1, LAGOS STATE.

SECOND TERM EXAMINATION 2019/2020 SESSION

SUBJECT:    MATHEMATICS                                                          CLASS:  J.S.S 3`

  1. If 3 = ½ gt2, make “t” the subject of the formular (a) t = Ö25/9    (b) t = (g/25)2   (c) t =Ö3/2g      (d) t = 25/g
  2. Expand the equation 5b (b-1) – 7b2  (a) 49b2 – 5b   (b) 2b2 + 5b  (c) -2b2 + 5b  (d) -7b2 – 5b
  3. When x = 7, the value of 5x + 8 is  (a) 43  (b) 60  (c) 78  (d) 90
  4. Simplify 6a – 3b – a + 8b  (a) 6a – a   (b) 5a – 6b  (c) 5 (a-b) (d) 0
  5. Find the reciprocal of 30 using calculator (a) 0.5  (b) 300  (c) 0.033 (d) 30/1
  6. Find the reciprocal of c/2Õ   (a)  c/2Õ     (b) Õ/2  (c)  2Õ/c  (d) 2 Õc
  7.  Using long division method find the reciprocal of 0.45  (a) 2.222  (b) 220  (c) 20   (d) 22
  8. Solve 1/26 – ½ = 1/2b  (a) ¼  (b) 1/3  (c) 1 ½  (d) 1 1/3
  9. Convert 2810 to a number in base 2  (a) 101102  (b) 110112  (c) 111002  (d) 100012
  10. Convert (111two)2 into number base 10
  11. Find the mean of these numbers 15, 18, 18, 15 + 12, 15 + 19  (a) 20  (b) 30  (c) 16  (d) 24
  12. The medium of these set of number: 17, 34, 13, 22, 27, 44, 81, 31, 13  (a) 11  (b) 81  (c) 22 (d) 34
  13. What is the mode of these numbers: 16, 16, 30, 31, 20, 60, 16, 38  (a) 20  (b) 31  (c) 16             (d) 38
  14. If Q varies directly as the inverse of L, write the mathematical relationship  (a) Q x 1/L              (b) Q x L  (c) L x 1/Q     (d) Q x 1 + Q
  1. x  varies directly as Q, write the relationship  (a)  x 1/Q  (b)  x Q  (c) Q x L  (d) x 1 + Q

SECTION B

  1. if ___________  + 111two = 1101two what is missing
  2.        1   1     1two
  3.   1    1    0two
  4. ______________
  5. _______________

18.         If a = 6, b = 4 and c = 3 find  in squareroot 4ac – b2 / abc

19.         ________ + 8 = A score

20.         Make h the subject of formular m  v h (R + r)

SECTION C:

  1. The number of spherical shot which can be made from a given volume of lead varies inversely as the cube of the diameter of the shot required.  When the diameter is 0.2cm the number of shot is 270.  How many shot of diameter 0.3cm can be cast from the same volume of lead? (10msk)

2.           A recipe for 4 people uses 20g of baking powder.  Find the mass of baking powder in the recipe for 7 people.  Make a table and draw a new graph.  Show the masses for 1 to 8 people.  Is the graph a straight line?  Does the graph show direct proportion?  (10 msk)

3.           Two group of people visited the penguin cinema.  The first group of four adults and three children paid N3,800 for their tickets.  The second group of five adults and two children paid N4050 for their tickets.  Calculate the cost of one adult and one child’s tickets at penguin cenima. (10 mks)

4.           The time t (sec) taken by a motorist to travel a certain distance at a speed Vkm/h is given by the formular

                          t  = v – a /b  where a and b are constant

                                 

b.           Find the time, when V = 68, a = 3 and b = 5  (3mks)

c.           Find the speed, when t = 30s, a = 3 and b = 5 (3mks)

5.           Make n the subject in the expression     =    n2 – m2 / m         ( 4 mks)

b.           Solve these simultaneous l near equation  5x – y = 13

                                                                               12x + 5y  = 9

c.           The mass of copper wire depends jointly upon its length and the square of its  diameter.  If 500m of wire of diameter 3mm has a mass of 31.5kg, what will be the mass of ikm of wire of diameter 2mm?

Lessonplan

Get Lesson plans, Lesson notes, Scheme of work, Exam Questions, Test Questions for all subject for Primary school and Secondary School.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Share via
Share
Close
Close

Adblock Detected

Please, Disable Adblock to access this website.
error: Please, enable javascript
Thanks for the kind gesture
Please Like and follow us