Mathematics Second Term Examination Questions 2019/2020 Session – Senior Secondary School Three ( SSS 1, SSS 2)

EDUDELIGHT GROUP OF SCHOOLS

2ND EXAMINATION 2019/2020

SUBJECT:  MATHEMATICS   CLASS: S.S. 1

SECTION A

1. Expand ( 2x – 5 )(x – 3)  A. x2 – 11x -5 B. x2 – 11x + 15 C.2 x2 – 5x -8 D. x2 – 5x -15
2. The roots of a quadratic equation are – ¼ and 3. The quadratic equation is A. 4 x2 – 13x -3=0  B. 4 x2 – 11x -3 = 0  C. 4 x2 +11x -3 = 0 D. 3 x2 – 11x -3 = 0
3. The angle of a sector of a circle of radius 35cm is 2880. Find the perimeter of the sector A.246cm B. 44cm C.114cm D. 141cm
4. If sin β = cos β  for β ≤  0 ≤ 3600  find the value of β A.1350, 3150 B 450, 2250 C. 450, 3150 D. 1350, 2250
5. If tan x = 2 2/5  find the value of x; 0 < x < 900  A.  5/13  B.   12/13  C.  2/5  D.  13/5
6. Cos 650 has the same value as A.Sin 650  B. Cos 2950   C. Cos 1150 D. Cos 2050
7. A chord is 5cm from the centre of a circle of diameter 26cm. find the length of the chord. A. 16cm B. 24cm C.18cm D.25.51cm
8. The nth  3 x 2(2-n). Write down the first three terms of the sequence. A.3/2 ,3,6 B. 6,3, 3/2 C. 3/2,3,1/2 D. 3/2,0,6
9. Solve the equation 5×2 – 4x -1 = 0 A.-1, 1/5 B. – 1/5,,1   C. 1, 1/5 D. -1,5
10.  P and q are two positive numbers such that p > 2q. Which of the following statement is true? A. –p > -2q B. . –p < -2q C. –q < 2p D. q < ½
11. If P = {3,7,11,13} and Q = {2,4,8,16}, which of the following statement is correct ?         A.( P n Q) = {2,3,4,13} B. P n Q = Ø  C. . P u Q = Ø  D.n( P u Q ) = 4
12. A group of eleven people can speak either English or French or both. Seven can speak English and six can speak French. How many students can speak both languages? A.3 B 2 C. 1 D. 13
13. The sides of a right angled triangle , in an ascending order of magnitude are 8cm,( x – 2) cm and x cm. find the value of x.  A.16 B. 17 C. 34 D. 60
14. Express 398753 correct to 3 significant figure A.398000 B.399000 C. 398700 D. 398800
15. Which of the following bearing is equivalent to S 500 W? A. 0400 B 2300 C. 1300 D. 2200
16. If N varies directly as M and N= 8 when M = 20, find M when N = 7. A.13 B. 17 ½ C. 15 D. 18 ½
17. A sector of a circle subtends 1720 at the centre of the circle has a perimeter of 600cm. find correct to the nearest cm, the radius of the circle. A. 116 cm B. 120 cm C.107 cm D. 100cm
18. Factorize completely 32x2y – 48x3y3  A. 8xy ( 4x – 6x2y2 ) B. 16x2y (2 – 3xy2)                  C. 16xy (2x – 3x2y2) D. 8x2y (4 – 6xy2)
19. If cos ( x + 40 )0 0.0872, what is the value of x .  A. 650 B. 450 C.850 D.750
20. Convert 3510 to a number in base 2 A.1011 B. 100011 C.110011 D. 10011

Section Two. Answer any four questions from this section.

1. In a school, 120 students offer Biology or Mathematics or both. 125 offer Biology and 110 offer Mathematics. How many offer Biology but not Mathematics
2. a. factorize px – 2qx – 4qy = 2py   b. given that the universal set U ={1,2,3,4,5,6,7,8,9,10}  P={ 1,2,3,4,6,10}  Q ={ 1,2,3,4,5,6,7,8,9,10}  show that               ( P u Q ) = P1 n Q1
3. The product of two consecutive positive odd numbers is 195. Find the two numbers
4. find the area of a circle with radius 7cm, which subtends an angle of 1200 at the centre.
5. Find the total surface area of a cylinder covered at both end of length 12cm, and radius 6cm.

EDUDELIGHT GROUP OF SCHOOLS

2ND EXAMINATION 2019/2020

SUBJECT:               MATHEMATICS   CLASS: S.S. 2

SECTION A

INSTRUCTION:                               Answer all the questions in this section

1. Find (1012)2 express your answer in base 2  (a) 10101   (b) 11001  (c) 19119   (d) 1101
2. Simplify:  0.027-1/3   (a) 3 1/3 (b) 3  (c) 1/3  (d) 3/10
3. Solve the inequality: 1/3(2x-1)<5  (a) x < -6   (b) x < 8  (c) x < -5  (d) x < 16
4. What is the smaller value of x for which x2 + 3x + 2 = 0? (a) -1  (b) -2  (c) 1  (d) 2
5. Factorize the expression  x(a-c) + y(c-a)    (a) (a-c) (y-x)  (b) (a-c) (x-y)  (c) (a+c) (x-y)  (d) (a-c)         (x + y)
6. Solve the equation 3x2 + 2x – 18 = 0    (a) -3, 2  (b) -2/3, 9  (c) -2, 9  (d) -2, 3
7. Solve the equation  (x+2) (x-7) = 0  (a) 1 or 8   (b) 2 or 7   (c) -4 or 5  (d) -5 or -2

In ABC above BC is produced to D,   /AB/ = /AC/, <BAC = 500.  Find <ACD    (a) 50  (b) 65   (c) 60  (d) 115

•  The bearing of two point Q and R from a point Q are 0300 and 1200 respectively.  If /PQ/= 2m and /PR/ = 5m.  Find the distance QR  (a) 13m   (b) 11m   (c) 9m
• Find dy/dx of x 3– 6x2 + 12x – 8  (a) 3x3 – 12x + 12  (b) 3x2 – 12x  + 12  (c) 3x2 + 12x – 12  (d) 3x2 = 12x -8
•  If dy/dx moves from the positive to a negative number there arises a  (a) Maximum point  (b) minimum point  (c) point of inflection  (d) stationary point
• If two point A(2, -3), b(3, 4) are points on the graph.  What is the gradient of the curve  (a( 1  (b)  7  (c)   -7  (d) -1
• If x varies over the set of real numbers which of the following is illustrated in the diagram above?  (a) -2 < x  <  3  (b) -2 < x < 3  (c) -2 < x < 3  (d) -2 < x < 3

-4  -3  -2  -1  0  1  2  3  4        x

1. In triangle  XYZ below XM is the altitude from X to YZ. XY = 15cm, and YM = 5cm.  find the length of YZ.  (a) 9cm  (b) 14 cm  (c) 12cm  (d) 19.85cm
2. Two angles of a triangle are 410 and 490 which of the following is true?  It is  (a) An equilateral triangle   (b) a right angled triangle

X

13cm                          15cm

Y         5cm     M                   Z

1. If sin O = -1/2, find the value of O between 00 and 3600  (a) 1200, 2400  (b) 2100, 3300  (c) 1200, 1800  (d) 2100, 3000

A tree is 8km due south of a building, Kofi is standing 5km west of the tree.  Use this information to answer question 17 and 18.

1. How far is K  from the building  (a) 4 2km   (b) 8km  (c) 8 2km   (d) 16km
2. Find the bearing of Kofi from the building  (a) 3150 (b) 2700 (c) 2250 (d)1350
3. Find the bearing of equivalent to 5500 W (a) 0400 (b) 1300  (c) 2200  (d) 2300
1. If sin 2 ө = cos ө find ө  (a) 40  (b) 22.5  (c) 45  (d)50
2. If Sin 2 Ө = Cos Ө  find Ө (a) 40 (b) 22.5 (c) 45 (d) 2.30

THEORY

Answer question number one and any other two questions

1. Find the turning points on the curve and determine whether the stationary points are maximum, minimum or points of inflexion in Y = x2 – 3x + 5.
2. (a) A point P is 40km from Q on a bearing of 0610 calculate, correct to one decimal place, the distance of  P to  (i) North of Q   (ii) East of Q

(b) Illustrate graphically and shade the region in which the inequalities Y – 2x < 5.  2y = x > 4

• Using the first principle, differentiate 2 x 2 + 2x – 3.
• Two men P and Q set off from a base camp R prospecting for oil.  P moves 20 km on a bearing of 2050 and Q move, 15km on a bearing of 0600.  calculate the (a) distance of Q from P  (b) bearing of Q from P  (Give your answer in each case correct to the nearest whole number)

Lessonplan

Get Lesson plans, Lesson notes, Scheme of work, Exam Questions, Test Questions for all subject for Primary school and Secondary School.

Close

Share via
Share
Close
Close